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1 Introduction
With the rapid development of foundational models, we now have dramatically expanded our capabilities

to understand multimodal sensory inputs such as language, images, videos, and audios within open-world
environments. This advancement sets the stage for the next goal in AI: the development of interactive
embodied foundational agent models. These autonomous agents aim to not only perceive but also act
within their environment and solve more complex sequential decision making tasks. This includes but is
not limited to autonomous agent for tool manipulation (for example, an agent that could automatically file
taxes), robotics (including but not limited to humanoid robots, robotic dogs, mobile manipulation and aerial
robot), autonomous driving, and gaming agents.

Moving forward, I envision that a data-driven learning approach similar to the next token prediction for
the pretraining language model could close the loop of perception and action, enabling the development
of embodied AI foundational agents. However, unlike language models, the development of embodied
foundational agents faces many unique challenges.

• Embodied agents—from gaming agents to autonomous vehicles and humanoid robots—operate within
varied and complex action spaces. It is crucial to develop foundational embodied agent models that
can effectively utilize data from these diverse embodiments.

• Unlike the language model, where we could easily get a huge amount of data by scraping the Internet
for pretraining, data is much more expensive to collect for embodied agents, and the pretraining tasks
are also not quite diverse enough to scale up the data.

• Since these agents will be applied in various scenarios, it is hard to enumerate all settings and train
models on every single task, so it is essential for those models to have the ability to self improve and
adapt to new tasks or situations by bootsraping from past sub-optimal trajectories.

To develop embodied foundational agents, we need to develop a principled approach to scale up task
and data generation, as well as to develop pretraining algorithms that can absorb large amounts of data from
diverse tasks and embodiments, adapting easily to unseen tasks with few-shot demonstrations or online
interactions. Below, I will outline my current research and provide a roadmap for my future research agenda
on foundational embodied agent models.

2 Overview of Current Research
In my research, I have addressed the challenge of using deep reinforcement learning (RL) to solve tasks

based on raw pixel observations, such as images. Deep RL enables the embodied agent to effectively learn
from historical suboptimal trajectories to achieve a better policy. However, its adoption in real-world sce-
narios has been limited due to its sample inefficiency, thanks to the entanglement of representation learning
with credit assignment and exploration problems in sequential decision-making. My work has specifically
focused on enhancing the sample efficiency of visual RL algorithms from two distinct angles.

I. Representation learning In our NeurIPS 2023 paper, TACO [17], we introduce a novel temporal con-
trastive learning approach for sequential decision-making tasks. Instead of directly modeling the transition
dynamics, which can lead to representational collapse, TACO focuses on optimizing the mutual information
between representations of current states paired with action sequences [zt ,ut , ...,ut+K−1] and representations
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of the corresponding future states zt+K through a contrastive learning objective. TACO acts as a representation
learning module compatible with any visual RL algorithm. We empirically show that it could significantly
enhance sample efficiency and performance for both online and offline visual RL algorithms across the
Deepmind Control Suite [9] and MetaWorld [14], two widely studied continuous control benchmarks.
II. Exploration-exploitation trade-off via dormant ratio Another of my recent works, DrM [13], pro-
vides a novel insight on the relationship between the agent’s exploration behaviors with dormant ratio, an
intrinsic measure of the agent policy network’s “activity level”. A low dormant ratio correlates with the
agent’s physical ability to actively explore the environment, whereas a high dormant ratio correlates with
the agent’s immobility. Based on this insight, we propose DrM, which aims to actively reduce the agent’s
dormant ratio and use it as a signal to guide the exploration-exploitation tradeoff. DrM significantly enhaces
SoTA visual RL algorithms across a variety of challenging tasks, making us one step closer to end-to-end
real-world visual RL applications.

Beyond the foundational research on how to enhance the sample efficiency of deep visual RL algorithms,
another important question that I have been studied is how we could leverage large offline pretraining dataset
so that for a new downstream task, the agent could adapt with only a few expert demonstrations or few online
interaction steps using RL. Towards this objective, my previous research has considered the following two
pretraining objectives.
1) Pretraining generalizable state representation Advancing upon TACO, we propose Premier-TACO, a
multitask feature representation learning approach designed to improve few-shot policy learning efficiency.
Compared with TACO, Premier-TACO incorporates a novel negative example sampling strategy tailored
towards multitask pretraining. This strategy is crucial in significantly boosting TACO’s computational effi-
ciency and performance, making large-scale multitask offline pretraining feasible. With empirical evaluation
under a diverse set of continuous control benchmarks including Deepmind Control Suite, MetaWorld, and
LIBERO, we demonstrate Premier-TACO’s effectiveness in pretraining visual representations, significantly
enhancing few-shot imitation learning performance under unseen tasks.
2) Pretraining temporally extended action abstractions Another of my recent work, PRISE [15], ap-
proaches multitask pretraining from a different angle. Given a pretraining dataset of demonstrations from
multiple tasks over a continuous action space, PRISE studies the problem of learning temporally extended
action primitives, i.e., skills, to improve downstream few-shot imitation learning by capitalizing on a novel
connection to NLP pretraining methodology. We demonstrate that by embedding continuous actions into
discrete codes and applying a popular NLP tokenization method, Byte Pair Encoding (BPE)—commonly
used in LLM pretraining—to these codes, we can identify variable-timespan action primitives that enable
efficient downstream imitation learning.

In addition to the topics above, I have also done research related to model-based RL [18, 11] and transfer
learning in RL [12, 8], leveraging world-models for efficient policy learning, and robust RL [7, 4, 6, 5] to
develop robust policies under perturbation.

3 Future Research Agenda
Given my research in deep reinforcement learning and self-supervised pretraining for sequential decision-

making, I plan to advance my research on embodied foundational agents with the following objectives:
enabling the next-generation embodied agent model to be pretrained on a broader range of procedurally
generated tasks and data, incorporating diverse embodiments, equipping the agent with the capability to
self-improve efficiently through trial and error, and also reducing its inference costs.
I. Aligning Vision Language Model (VLM) with robotics data through temporal action tokenization
Aligning multimodal language models with robotics data for low-level control has been highly successful,
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as exemplified by Google’s recent development of the RT-2 vision-language-action model [2], which fine-
tunes a vision-language model using a large robotics dataset. However, one key bottleneck of the current
approach is its slow inference speed, as robots need to execute actions at a high frequency by querying large
models. Additionally, scaling up the data to accommodate diverse embodiments with heterogeneous action
spaces presents a significant challenge.
To address the issues above, my temporal action tokenization work, PRISE [15], could potentially play
a crucial role here. Instead of finetuning with raw action spaces, we could finetune VLMs with PRISE
pretrained temporally extended action tokens, where each token corresponds to a sequence of closed-loop
policies. This enables the robot to significantly improve inference speed without distilling the model, as
it no longer needs to query the large model at each timestep. Furthermore, it would also be interesting
for my future work to advance the PRISE tokenization mechanism to accommodate diverse heterogeneous
action spaces, allowing us to construct unified action tokens across different embodiments and enhance the
scalability of the RT-2 approach for incorporating data from various physical embodiments.

II. Self-improving agent through offline-to-online adaptation / in-context learning The current large
embodied foundational models are primarily limited to imitation learning using large human-teleoperated
demonstration datasets. These agents intrinsically lack the ability to self-improve in sub-optimal scenarios,
such as when faced with unfamiliar tasks or significant changes in visual observations. In such cases,
bootstrapping from their past non-successful trajectories through trial and error is essential, posing a unique
challenge compared to existing LLM/VLMs.

Toward this goal, I am planning to conduct my research in two directions. First, I will explore how
we can efficiently do online policy adaptation by leveraging knowledge pretrained on large offline datasets.
Premier-TACO [16] demonstrated that pretraining a generalizable state representation can significantly en-
hance downstream performance. Going beyond state representation, we could also pretrain a world model,
which could then be used for model-based policy optimization during downstream adaptation time. An im-
portant research question to address here is how to learn an accurate, universal world model and whether this
could be linked to the recent development of large video prediction/representation models [3, 1], leveraging
the extensive knowledge of these models learned from internet-scale data.

On the other hand, while RL can still be sample inefficient, the trial and error phase might alternatively
be approached through in-context learning. During training, a large transformer model is given a sequence
of trajectories with ascending rewards, learning to predict actions from better trajectories based on poorer
ones. During evaluation, historical trajectories can simply be input into the context window, allowing the
transformer to strategize improvements for subsequent trajectories. By curating a large and diverse dataset
from different tasks/agents and training/finetuning a large transformer model on it, we could potentially
unlock the agent’s self-improvement capability without relying on traditional RL.

III. Pipeline of scaling up data for embodied agents via LLM A large capacity foundational model
cannot be learned without large, diverse data. Recent works [10] have utilized the coding capabilities of
LLMs to create new tasks in simulation to train a generalizable multitask policy. However, instead of
generating all tasks at once, task generation should ideally be procedurally generated, tailored to the agent’s
capabilities. Thus, developing an iterative process would be beneficial, where at each round, the LLM is
informed of the agent’s current capabilities by analyzing its historical success rates on previous pool of tasks.
The LLMs would then generate new tasks to enhance the agent’s abilities, with the agent learning from these
newly coded tasks. This process would continue, allowing the LLMs to progressively come up with new
tasks to continuously expand the agent’s capabilities. I envision this could potentially be a generic pipeline
for scaling up data across various sequential decision-making applications, such as robotic manipulation,
humanoid control, gaming agents, and autonomous tools manipulation agents.
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